Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; 38(1): e14065, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36811200

RESUMEN

A range of conservation and restoration tools are needed to safeguard the structure and function of aquatic ecosystems. Aquaculture, the culturing of aquatic organisms, often contributes to the numerous stressors that aquatic ecosystems face, yet some aquaculture activities can also deliver ecological benefits. We reviewed the literature on aquaculture activities that may contribute to conservation and restoration outcomes, either by enhancing the persistence or recovery of one or more target species or by moving aquatic ecosystems toward a target state. We identified 12 ecologically beneficial outcomes achievable via aquaculture: species recovery, habitat restoration, habitat rehabilitation, habitat protection, bioremediation, assisted evolution, climate change mitigation, wild harvest replacement, coastal defense, removal of overabundant species, biological control, and ex situ conservation. This list may be expanded as new applications are discovered. Positive intentions do not guarantee positive ecological outcomes, so it is critical that potentially ecologically beneficial aquaculture activities be evaluated via clear and measurable indicators of success to reduce potential abuse by greenwashing. Unanimity on outcomes, indicators, and related terminology will bring the field of aquaculture-environment interactions into line with consensus standards in conservation and restoration ecology. Broad consensus will also aid the development of future certification schemes for ecologically beneficial aquaculture.


Se necesita una gama de herramientas de conservación y restauración para salvaguardar la estructura y función de los ecosistemas acuáticos. La acuacultura (el cultivo de organismos acuáticos) generalmente contribuye a los numerosos estresantes que soportan los ecosistemas acuáticos, aunque algunas actividades de la acuacultura también pueden proporcionar beneficios ecológicos. Revisamos la literatura sobre las actividades de acuacultura que pueden contribuir a los resultados de conservación y restauración, ya sea al incrementar la persistencia o recuperación de una o más especies objetivo o al llevar a los ecosistemas acuáticos hacia un estado objetivo. Identificamos doce resultados con beneficios ecológicos que pueden lograrse con la acuacultura: recuperación de la especie, recuperación del hábitat, restauración del hábitat, rehabilitación del hábitat, protección del hábitat, bioreparación, evolución asistida, mitigación del cambio climático, sustitución de la captura silvestre, defensa costera, eliminación de las especies sobreabundantes, control biológico y conservación ex situ. Esta lista puede expandirse conforme se descubren nuevas aplicaciones. Las intenciones positivas no garantizan resultados ecológicos positivos, así que es importante que se evalúen las actividades de acuacultura con un posible beneficio ecológico por medio de indicadores del éxito claros y medibles para reducir el abuso potencial por ecoblanqueo o greenwashing. La unanimidad en los resultados, indicadores y terminología relacionada armonizará las interacciones entre la acuacultura y el ambiente con los estándares de la conservación y la ecología de la restauración. Un consenso generalizado también ayudará con el desarrollo de futuros esquemas de certificación para la acuacultura con beneficios ecológicos. Obtención de resultados de conservación y restauración a través de la acuacultura con beneficios ecológicos.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Acuicultura
2.
Evol Appl ; 16(12): 1982-1998, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143899

RESUMEN

Pests often evolve resistance to pest controls used in agriculture and aquaculture. The rate of pest adaptation is influenced by the type of control, the selective pressure it imposes, and the gene flow between farms. By understanding how these factors influence evolution at the metapopulation level, pest management strategies that prevent resistance from evolving can be developed. We developed a model for the metapopulation and evolutionary dynamics of the salmon louse (Lepeophtheirus salmonis), which is a major parasite affecting salmon aquaculture. Different management scenarios were simulated across a network of salmon farms covering half of Norway, and their effects on louse epidemiology and evolution were investigated. We compared louse controls that differed in how they were deployed through time (discrete vs. continuous), how they impacted the louse life cycle, and in their overall efficacy. We adjusted the strength of selection imposed by treatments, the dominance effect of the resistant allele, and the geographic location at which resistance originated. Continuously acting strategies (e.g., louse-resistant salmon) were generally more effective than discrete strategies at controlling lice, especially when they increased louse mortality during early developmental stages. However, effective strategies also risked imposing frequent and/or strong selection on lice, thus driving rapid adaptation. Resistant alleles were more likely to be lost through genetic drift when they were recessive, had a low-fitness advantage, or originated in low-farm-density areas. The north-flowing current along the Norwegian coastline dispersed resistant genes from south to north, and limited gene flow in the opposite direction. We demonstrate how evolutionary models can produce quantitative predictions over large spatial and temporal scales and for a range of pest control scenarios. Quantitative outputs can be translated into practical management decisions applied at a regional level to minimise the risk of resistance developing.

3.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504717

RESUMEN

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

4.
Microorganisms ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208657

RESUMEN

Amoebic gill disease (AGD) is a significant health issue for Atlantic salmon farmed in a marine environment. While the disease is currently managed using freshwater or hydrogen peroxide baths, there is a need to develop other treatments. The aims of this study were to examine the effect of salinity (0 ppt and 35 ppt) and temperature (3 °C and 15 °C) on attachment and survival of Neoparamoeba perurans in vitro over short exposure times (15 min and 2 h) and to assess the efficacy of reduced temperature (3 °C) as treatment for Atlantic salmon affected by AGD. In vitro freshwater 3 °C was at least as effective as freshwater 15 °C and the attachment was significantly lower after 2 h in freshwater 3 °C than freshwater 15 °C. In vivo there was no difference between the fish treated with freshwater 15 °C for 2 h or freshwater 3 °C. This study showed that despite exposure to low temperature reducing attachment of N. perurans to their substrate in vitro, 15 min cold-water bath treatment was not more effective at reducing AGD in Atlantic salmon than current commercial 2 h freshwater bath.

5.
Front Physiol ; 12: 755659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899386

RESUMEN

Advances in tag technology now make it possible to monitor the behavior of small groups of individual fish as bioindicators of population wellbeing in commercial aquaculture settings. For example, tags may detect unusual patterns in fish heart rate, which could serve as an early indicator of whether fish health or welfare is becoming compromised. Here, we investigated the use of commercially available heart rate biologgers implanted into 24 Atlantic salmon weighing 3.6 ± 0.8 kg (mean ± SD) to monitor fish over 5 months in a standard 12 m × 12 m square sea cage containing ∼6,000 conspecifics. Post tagging, fish established a diurnal heart rate rhythm within 24 h, which stabilized after 4 days. Whilst the registered tagged fish mortality over the trial period was 0%, only 75% of tagged fish were recaptured at harvest, resulting in an unexplained tag loss rate of 25%. After 5 months, tagged fish were approximately 20% lighter and 8% shorter, but of the similar condition when compared to untagged fish. Distinct diurnal heart rate patterns were observed and changed with seasonal day length of natural illumination. Fish exhibited lower heart rates at night [winter 39 ± 0.2 beats per min (bpm), spring 37 ± 0.2 bpm, summer 43 ± 0.3 bpm, mean ± SE] than during the day (winter 50 ± 0.3 bpm, spring 48 ± 0.2 bpm, summer 49 ± 0.2 bpm) with the difference between night and day heart rates near half during the summer (6 bpm) compared to winter and spring (both 11 bpm). When fish experienced moderate and severe crowding events in early summer, the highest hourly heart rates reached 60 ± 2.5 bpm and 72 ± 2.4 bpm, respectively, on the day of crowding. Here, if the negative sublethal effects on fish that carry tags (e.g., growth rate) can be substantially reduced, the ability to monitor diurnal heart rate patterns across seasons and detect changes during crowding events, and using heart rate biologgers could be a useful warning mechanism for detecting sudden changes in fish behavior in sea cages.

6.
Evol Appl ; 14(8): 2025-2038, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429746

RESUMEN

The evolution of pest resistance to management strategies is a major challenge for farmed systems. Mitigating the effects of pest adaptation requires identifying the selective pressures imposed by these strategies. In Atlantic salmon (Salmo salar) aquaculture, barriers are used to prevent salmon louse (Lepeophtheirus salmonis) larvae (copepodids) from entering salmon cages. These barriers are effective against shallow-swimming copepodids, but those swimming deeper can pass underneath and infest salmon. Laboratory experiments suggest that depth regulation in copepodids is a variable behavioural trait with a genetic basis. We used biological-hydrodynamic dispersal models to assess how this trait variation alters the dispersion of lice through the ocean environment and into farms. The dispersal of copepodids with 3 behavioural phenotypes (deep, mean or shallow) was modelled over winter-spring and spring-summer periods in a Norwegian fjord system with intensive aquaculture. The infestation pressure of each phenotype on barrier cages was estimated from their modelled depth distributions: copepodids deeper than 10 m were predicted to successfully pass underneath barriers. The deep phenotype was the most abundant below 10 m and reached infestation pressures 3 times higher than that of the mean phenotype. In contrast, the shallow phenotype infestation pressure reached less than half that of the mean phenotype. These differences in relative fitness indicate that barriers can impose strong directional selection on the swimming behaviour of copepodids. The strength of this selection varied seasonally and geographically, with selection for the deep phenotype stronger in winter-spring and at coastal locations than in spring-summer and within fjords. These findings can be applied across farms to slow louse adaptation, by limiting barriers during situations of strong selection, although this must be balanced against trade-offs to short-term efficacy. More broadly, our study highlights new ways in which dispersal models can address evolutionary questions crucial for sustainable parasite management in aquaculture.

7.
Zootaxa ; 4869(4): zootaxa.4869.4.5, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33311345

RESUMEN

The systematics of the genus Hannia Vari 1978, endemic to freshwater habitats of remote north-western Australia, is revised in light of recent collections in the region and a molecular study of the group that identified an undescribed candidate species. A new freshwater fish species (Hannia wintoni sp. nov) is described based on analysis of multiple nuclear genetic markers (53 allozyme loci), mitochondrial DNA sequence data (601 bp cytochrome b) and morphology (examination of a suite of 66 morphometric and meristic characters). Head profile, postorbital length, maximum length, preopercular spines and pectoral-fin rays are characters that best distinguish H. wintoni sp. nov from its only congener, H. greewayi. While the existing description of H. greenwayi is robust and accurate, we present a number of additional characters that enhance to the original description, based on type and fresh material. Information on the known distribution, habitats and conservation status of the two species is summarised. The new species is a narrow-range endemic.


Asunto(s)
Ecosistema , Peces , Animales , ADN Mitocondrial , Agua Dulce , Australia Occidental
8.
Mar Environ Res ; 162: 105152, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956970

RESUMEN

Biodiverse ecosystems are sometimes inherently resistant to invasion, but environmental change can facilitate invasion by disturbing natural communities and providing resources that are underutilised by native species. In such cases, sufficiently abundant native predators may help to limit invasive population growth. We studied native and invasive seastars feeding under two mussel aquaculture sites in south-east Australia, to determine whether food-rich farm habitats are likely to be reproductive hotspots for the invasive seastar (Asterias amurensis) and whether the larger native seastar (Coscinasterias muricata) reduces the value of the farms for the invader. We found that invaders were not significantly more abundant inside the farms, despite individuals residing within the farms having higher body condition metrics and reproductive investment than those outside. By contrast, the native seastar was 25 × more abundant inside the two farms than outside. We observed several intraguild predation events and an absence of small invaders at the farms despite reports of high larval recruitment to these environments, consistent with some level of biotic control by the native predator. A laboratory choice experiment showed that invaders were strongly attracted to mussels except when the native predator was present. Together, these findings indicate that a combination of predation and predator evasion may play a role in reducing the value of food-rich anthropogenic habitats for this invasive species.


Asunto(s)
Bivalvos , Ecosistema , Animales , Humanos , Especies Introducidas , Conducta Predatoria , Estrellas de Mar
9.
Pathogens ; 9(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707755

RESUMEN

Amoebic gill disease (AGD), caused by the amoeba Neoparamoeba perurans, has led to considerable economic losses in every major Atlantic salmon producing country, and is increasing in frequency. The most serious infections occur during summer and autumn, when temperatures are high and poor dissolved oxygen (DO) conditions are most common. Here, we tested if exposure to cyclic hypoxia at DO saturations of 40-60% altered the course of infection with N. perurans compared to normoxic controls maintained at ≥90% DO saturation. Although hypoxia exposure did not increase initial susceptibility to N. perurans, it accelerated progression of the disease. By 7 days post-inoculation, amoeba counts estimated from qPCR analysis were 1.7 times higher in the hypoxic treatment than in normoxic controls, and cumulative mortalities were twice as high (16 ± 4% and 8 ± 2%), respectively. At 10 days post-inoculation, however, there were no differences between amoeba counts in the hypoxic and normoxic treatments, nor in the percentage of filaments with AGD lesions (control = 74 ± 2.8%, hypoxic = 69 ± 3.3%), or number of lamellae per lesion (control = 30 ± 0.9%, hypoxic = 27.9 ± 0.9%) as determined by histological examination. Cumulative mortalities at the termination of the experiment were similarly high in both treatments (hypoxic = 60 ± 2%, normoxic = 53 ± 11%). These results reveal that exposure to cyclic hypoxia in a diel pattern, equivalent to what salmon are exposed to in marine aquaculture cages, accelerated the progression of AGD in post-smolts.

10.
Int J Parasitol ; 50(10-11): 865-872, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652129

RESUMEN

The evolution of pesticide resistance has driven renewed interest in non-chemical pest controls in agriculture. Spatial manipulations (physical barriers and fallowing, for example) can be an effective method of prevention, but these too might impose selection and cause rapid adaptation in pests. In salmon aquaculture, various non-chemical approaches have emerged to combat parasitic salmon lice (Lepeophtheirus salmonis) - a major pest with clear signs of evolved chemical resistance. 'Depth-based' preventions, now widely implemented, reduce infestation rates by physically segregating salmon from lice in their infective copepodid stage occurring in surface waters. Copepodids distributed deeper in the water column, however, can bypass these barriers and infest farms. If swimming depth is a heritable trait, we may see rapid evolutionary shifts in response to widespread depth-based prevention. We collected lice from Norwegian salmon farms and assayed more than 11,250 of their laboratory-reared offspring across 37 families. The vertical distributions of copepodids were measured using experimental water columns pressurised to simulate conditions at 0, 5 and 10 m depths. We demonstrated that lice respond strongly to hydrostatic pressure: an increase in pressure doubled the number of lice that migrated to the top of columns. There was also a large effect of family on this response, with the percentage of lice ascending to the top of pressurised columns ranging from 17 to 79% across families. Families with a weak swimming response to pressure are expected to occur deeper in the water column and so be more likely to infest farms employing depth-based preventions. If this between-family variation reflects genetic variation, then the parasite population may have the capacity to adapt to preventative measures. Such adaptation would have important commercial and ecological implications.


Asunto(s)
Copépodos , Enfermedades de los Peces , Salmo salar , Adaptación Fisiológica , Animales , Acuicultura , Copépodos/fisiología , Enfermedades de los Peces/parasitología , Presión Hidrostática , Noruega , Salmo salar/parasitología
11.
Int J Parasitol ; 50(10-11): 787-796, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32035989

RESUMEN

The salmon aquaculture industry has adopted the use of invertivorous 'cleaner fishes' (CF) for biological control of sea louse infestations on farmed salmon. At present, ~50 million CF are used annually in Norway alone, with variable success in experimental and industrial contexts. We used a national scale database of louse counts, delousing treatments and CF stocking events on Norwegian salmon farms to test for evidence of CF efficacy at 488 sites that completed a grow-out cycle within 2016-2018. Our analysis revealed that sites using more CF over the duration of a grow-out cycle did not have fewer lice on average, likely because CF use is reactive and in proportion to the scale of the louse problem. Over time within sites, we found that (i) sites using more CF early in the grow-out cycle were able to wait slightly longer (conservatively, a 5.2 week delay with 5000 CF stocked week-1) before conducting the first delousing treatment, and (ii) CF stocking events were followed, on average, by a small reduction in louse population growth rates. However, both effects were small and highly variable, and louse population growth rates remained positive on average, even when large numbers of CF were used (tens of thousands per site). Moreover, effects of CF on louse density tended to be short-lived, likely reflecting mortality and escape of stocked CF. Overall, the data indicate that while some sites consistently obtain good results from CF, there is also widespread suboptimal use. A better understanding of factors affecting CF efficacy in commercial sea cages is required to inform legislation and drive more efficient and ethical use of CF by the salmon aquaculture industry.


Asunto(s)
Acuicultura , Copépodos , Enfermedades de los Peces , Salmo salar , Animales , Copépodos/patogenicidad , Enfermedades de los Peces/parasitología , Noruega , Salmo salar/parasitología
12.
Glob Chang Biol ; 26(5): 2829-2840, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32034982

RESUMEN

Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi-arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non-native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects.


Asunto(s)
Ecosistema , Lagartos , Animales , Australia , Bufo marinus , Especies Introducidas
13.
Pest Manag Sci ; 76(3): 901-906, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31441192

RESUMEN

BACKGROUND: Sea lice infestations on Atlantic salmon (Salmo salar) farms are a considerable burden on the industry and put wild salmonid populations at risk. Frequent delousing treatments are necessary to keep lice densities below allowable limits, but currently viable treatments have drawbacks in terms of financial cost, animal welfare, or environmental impacts. We tested if 254 nm ultraviolet C light (UVC) could function as a new preventative method to suppress reproduction of salmon lice (Lepeophtheirus salmonis) by sterilizing fertilized eggs. We exposed salmon lice eggstrings to a range of UVC intensities and durations to identify effective doses. RESULTS: A cumulative dose of 0.008 J cm-2 induced 5% egg mortality, while 95% egg mortality occurred at 0.09 J cm-2 , indicating that UVC can be effective as a preventative treatment. The total cumulative dose appeared to be more important than the duration or number of individual exposures by which the total dose was achieved. CONCLUSION: UVC treatment has immediate applications for the salmon aquaculture industry, including for the treatment of wastewater from delousing or other operations. Future work will assess the feasibility of UVC dose delivery on host salmon in sea cage environments that involves little or no fish handling and creates negligible environmental impacts. © 2019 Society of Chemical Industry.


Asunto(s)
Copépodos , Infestaciones Ectoparasitarias , Enfermedades de los Peces , Salmo salar , Animales , Acuicultura , Infestaciones Ectoparasitarias/veterinaria , Esterilización
14.
Curr Zool ; 65(6): 665-673, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31857813

RESUMEN

Electronic tags are widespread tools for studying aquatic animal behavior; however, tags risk behavioral manipulation and negative welfare outcomes. During an experiment to test behavioral differences of Atlantic salmon Salmo salar in different aquaculture cage types, including ones expected to elicit deeper swimming behavior, we found negative tagging effects depending on whether cages were depth-modified. In the experiment, data storage tags implanted in Atlantic salmon tracked their depth behavior and survival in unmodified sea-cages and depth-modified sea-cages that forced fish below or into a narrow seawater- or freshwater-filled snorkel tube from a 4 m net roof to the surface. All tagged individuals survived in unmodified cages; however, survival was reduced to 62% in depth-modified cages. Survivors in depth-modified cages spent considerably less time above 4 m than those in unmodified cages, and dying individuals in depth-modified cages tended to position in progressively shallower water. The maximum depth that fish in our study could attain neutral buoyancy was estimated at 22 m in seawater. We calculated that the added tag weight in water reduced this to 8 m, and subtracting the tag volume from the peritoneal cavity where the swim bladder reinflates reduced this further to 4 m. We conclude that the internal tag weight and volume affected buoyancy regulation as well as the survival and behavior of tagged fish. Future tagging studies on aquatic animals should carefully consider the buoyancy-related consequences of internal tags with excess weight in water, and the inclusion of data from dying tagged animals when estimating normal depth behaviors.

15.
Int J Parasitol ; 49(11): 843-846, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31525373

RESUMEN

Methods to prevent parasite infestations in farmed fish are becoming widespread, yet tests of their effectiveness often lack commercial relevance and statistical power, which may lead to technology misuse. Here, we examined salmon louse infestation on Atlantic salmon in triplicate commercial snorkel louse barrier and standard cages over a 12 month production cycle. Barrier cages reduced newly settling lice on Atlantic salmon by 75%, with variability in parasite reduction over time depending upon environmental variables. The commercial, triplicate, long-term study design serves as a template to validate performance and detect weaknesses in anti-parasite techniques in fish mariculture.


Asunto(s)
Acuicultura/métodos , Copépodos/crecimiento & desarrollo , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/prevención & control , Salmo salar/parasitología , Animales , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/prevención & control , Enfermedades de los Peces/parasitología
16.
Ecol Appl ; 29(7): e01956, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219635

RESUMEN

Animals that select the best available habitats are most likely to succeed in degraded environments, but ecological change can create evolutionarily unfamiliar habitats that may be under- or over-utilized by native fauna. In temperate coastal waters, eutrophication and grazing have driven a global decline in native seaweeds and facilitated the establishment of nonnative seaweeds that provide novel macrophyte habitat. We tested whether a nonnative kelp canopy (wakame Undaria pinnatifida) functions as a viable habitat or ecological trap for several endemic reef fishes on urchin-grazed reefs in southern Australia. We assessed the willingness of fish to utilize native vs. wakame kelp canopy via a laboratory habitat choice experiment and by recording natural recruitment to specially constructed boulder reefs with manipulated kelp canopy. We also compared fish communities on natural reefs using a before-after-control-impact survey of wakame patches, and to assess the quality of wakame habitat for resident fish, compared fitness metrics for fish collected from habitats with native vs. wakame kelp canopy. Endemic fishes did not distinguish between the native or wakame canopy but preferred both to barren reef habitats. On urchin-grazed natural reefs, fish occurred in higher abundance and diversity where seasonal wakame canopy was present. Fitness metrics in fish collected from wakame patches were comparable to those in fish from adjacent native kelp patches. These findings indicate that the nonnative canopy provides a viable habitat for endemic fish and may play a role in sustaining native fauna populations in this degraded ecosystem. More broadly, we recommend that managers consider the role of nonnative habitats within the context of environmental change, as endemic fauna may benefit from nonnative habitat-formers in areas where their native counterparts cannot persist.


Asunto(s)
Ecosistema , Kelp , Animales , Arrecifes de Coral , Ecología , Peces
17.
Ecol Evol ; 9(8): 4568-4588, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031928

RESUMEN

The Australian freshwater fish fauna is very unique, but poorly understood. In the Australian Monsoonal Tropics (AMT) biome of northern Australia, the number of described and candidate species has nearly doubled since the last attempt to analyse freshwater fish species composition patterns and determine a bioregionalisation scheme. Here, we utilise the most complete database of catchment-scale freshwater fish distributions from the AMT to date to: (a) reanalyze spatial patterns of species richness, endemism and turnover of freshwater fishes; (b) propose a biogeographic regionalisation based on species turnover; (c) assess the relationship between species turnover and patterns of environmental change and historic drainage connectivity; and (d) identify sampling gaps. Biogeographic provinces were identified using an agglomerative cluster analysis of a Simpson's beta (ß sim) dissimilarity matrix. A generalised dissimilarity model incorporating eighteen environmental variables was used to investigate the environmental correlates of species turnover. Observed and estimated species richness and endemism were calculated and inventory completeness was estimated based on the ratio of observed to estimated species richness. Three major freshwater fish biogeographic provinces and 14 subprovinces are proposed. These differ substantially from the current bioregionalisation scheme. Species turnover was most strongly influenced by environmental variables that are interpreted to reflect changes in terrain (catchment relief and confinement), geology and climate (runoff perenniality, stream density), and biotic responses to climate (net primary productivity). Past connectivity between rivers during low sea-level events is also influential highlighting the importance of historical processes in explaining contemporary patterns of biodiversity in the AMT. The inclusion of 49 newly discovered species and candidate species only reinforced known focal points of species richness and endemism in the AMT. However, a number of key sampling gaps remain that need to be filled to fully characterise the proposed bioregionalisation.

18.
Int J Parasitol ; 49(3-4): 277-286, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30660636

RESUMEN

Marine ecosystems are beset by disease outbreaks, and efficient strategies to control dispersal of pathogens are scarce. We tested whether introducing no-farming areas or 'firebreaks' could disconnect dispersal networks of a parasitic disease affecting the world's largest marine fish farming industry (∼1000 farms). Larval salmon lice (Lepeophtheirus salmonis) are released from and transported among salmon farms by ocean currents, creating inter-farm networks of louse dispersal. We used a state-of-the-art biophysical model to predict louse movement along the Norwegian coastline and network analysis to identify firebreaks to dispersal. At least one firebreak that fragmented the network into two large unconnected groups of farms was identified for all seasons. During spring, when wild salmon migrate out into the ocean, and louse levels per fish at farms must be minimised, two effective firebreaks were created by removing 13 and 21 farms (1.3% and 2.2% of all farms in the system) at ∼61°N and 67°N, respectively. We have demonstrated that dispersal models coupled with network analysis can identify no-farming zones that fragment dispersal networks. Reduced dispersal pathways should lower infection pressure at farms, slow the evolution of resistance to parasite control measures, and alleviate infection pressure on wild salmon populations.


Asunto(s)
Acuicultura/métodos , Copépodos/crecimiento & desarrollo , Transmisión de Enfermedad Infecciosa/prevención & control , Enfermedades de los Peces/prevención & control , Control de Infecciones/métodos , Enfermedades Parasitarias en Animales/prevención & control , Animales , Noruega , Salmón
19.
J Exp Biol ; 221(Pt 24)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30352824

RESUMEN

Animals use irruptive movement to avoid exposure to stochastic and pervasive environmental stressors that impact fitness. Beneficial irruptive movements transfer individuals from high-stress areas (conferring low fitness) to alternative localities that may improve survival or reproduction. However, being stochastic, environmental stressors can limit an animal's preparatory capacity to enhance irruptive movement performance. Thus individuals must rely on pre-existing, or rapidly induced, physiological and behavioural responses. Rapid elevation of glucocorticoid hormones in response to environmental stressors are widely implicated in adjusting physiological and behaviour processes that could influence irruptive movement capacity. However, there remains little direct evidence demonstrating that corticosterone-regulated movement performance or interaction with pervasiveness of environmental stress, confers adaptive movement outcomes. Here, we compared how movement-related survival of cane toads (Rhinella marina) varied with three different experimental corticosterone phenotypes across four increments of increasing environmental stressor pervasiveness (i.e. distance from water in a semi-arid landscape). Our results indicated that toads with phenotypically increased corticosterone levels attained higher movement-related survival compared with individuals with control or lowered corticosterone phenotypes. However, the effects of corticosterone phenotypes on movement-related survival to some extent co-varied with stressor pervasiveness. Thus, our study demonstrates how the interplay between an individual's corticosterone phenotype and movement capacity alongside the arising costs of movement and the pervasiveness of the environmental stressor can affect survival outcomes.


Asunto(s)
Migración Animal/fisiología , Bufo marinus/fisiología , Corticosterona/metabolismo , Longevidad/fisiología , Estrés Fisiológico , Distribución Animal/fisiología , Animales , Northern Territory , Fenotipo
20.
J Fish Dis ; 41(9): 1403-1410, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29938799

RESUMEN

Freshwater bathing is one of the main treatment options available against amoebic gill disease (AGD) affecting multiple fish hosts in mariculture systems. Prevailing freshwater treatments are designed to be long enough to kill Neoparamoeba perurans, the ectoparasite causing AGD, which may select for freshwater tolerance. Here, we tested whether using shorter, sublethal freshwater treatment durations are a viable alternative to lethal ones for N. perurans (2-4 hr). Under in vitro conditions, gill-isolated N. perurans attached to plastic substrate in sea water lifted off after ≥2 min in freshwater, but survival was not impacted until 60 min. In an in vivo experiment, AGD-affected Atlantic salmon Salmo salar subjected daily to 30 min (sublethal to N. perurans) and 120 min (lethal to N. perurans) freshwater treatments for 6 days consistently reduced N. perurans cell numbers on gills (based on qPCR analysis) compared to daily 3 min freshwater or seawater treatments for 6 days. Our results suggest that targeting cell detachment rather than cell death with repeated freshwater treatments of shorter duration than typical baths could be used in AGD management. However, the consequences of modifying the intensity of freshwater treatment regimes on freshwater tolerance evolution in N. perurans populations require careful consideration.


Asunto(s)
Amebiasis/terapia , Control de Enfermedades Transmisibles/métodos , Agua Dulce , Salmo salar/parasitología , Amebiasis/parasitología , Amebozoos/efectos de los fármacos , Amebozoos/fisiología , Animales , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/terapia , Branquias/parasitología , Branquias/patología , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...